Numerical Simulation of Microflows by a Dom with Streaming and Collision Processes

نویسنده

  • L. M. Yang
چکیده

Inspired from the idea of developing lattice Boltzmann method (LBM), a discrete ordinate method (DOM) with streaming and collision processes is presented for simulation of microflows in this work. The current method is quite different from the conventional discrete ordinate method (DOM), unified gas kinetic scheme (UGKS) and discrete unified gas kinetic scheme (DUGKS), in which the finite volume method (FVM) or the finite difference method (FDM) is usually utilized to discretize the discrete velocity Boltzmann equation (DVBE). Due to the application of FVM or FDM, the evaluation of the flux of distribution function at the cell interface becomes an essential step for these approaches. Besides that, for the UGKS and DUGKS, not only the flux of distribution functions but also the conservative variables at the cell interface are needed to be computed. These processes require a lot of computational efforts. In contrast, for the developed method, it only needs interpolations within the cell to perform the streaming process. Thus, the computational efficiency can be improved accordingly. To compare the accuracy and efficiency of present scheme with those of DSMC and/or UGKS, several numerical examples including the Couette flow, pressure driven Poiseuille flow and thermal transpiration flow are simulated. Numerical results showed that the solution accuracy of current scheme is comparable to that of DSMC and UGKS. However, as far as the computational efficiency is concerned, the present scheme is more efficient than UGKS.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combined mixed convection and radiation simulation of inclined lid driven cavity

This paper presents a numerical investigation of the laminar mixed convection flow of a radiating gas in an inclined lid-driven cavity. The fluid is treated as a gray, absorbing, emitting, and scattering medium. The governing differential equations including continuity, momentum and energy are solved numerically by the computational fluid dynamics techniques (CFD) to obtain the velocity and tem...

متن کامل

Numerical simulation of flows from free molecular regime to continuum regime by a DVM with streaming and collision processes

Article history: Received 29 May 2015 Received in revised form 11 November 2015 Accepted 20 November 2015 Available online xxxx

متن کامل

Numerical solution and simulation of random differential equations with Wiener and compound Poisson Processes

Ordinary differential equations(ODEs) with stochastic processes in their vector field, have lots of applications in science and engineering. The main purpose of this article is to investigate the numerical methods for ODEs with Wiener and Compound Poisson processes in more than one dimension. Ordinary differential equations with Ito diffusion which is a solution of an Ito stochastic differentia...

متن کامل

بسته‌های نسوخته گازی در تراک‌های با ساختار نامنظم (علمی-پژوهشی)

Abstract A two-dimensional numerical simulation is performed in the present work to study the structure of a detonation wave in high activation energy mixtures, which are characterized by their turbulent reaction zone structure and unreacted pockets. The process of transverse wave and triple point collision with the channel walls, formation and consumption mechanism of unburnt gas pockets is e...

متن کامل

NRxx Simulation of Microflows with Finite Volume Method

Although three-dimensional space NRxx(3D-NRxx) method[1] has some useful numerical properties and is valid for big Knudson number, its high computational cost results limited applications. Based on the idea of limitting three-dimensional space Boltzmann equation on two-dimensional space[2], we apply 3D-NRxx method on two-dimensional space, to get two-dimensional NRxx(2D-NRxx) method. In order t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015